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Devoir Maison 4

Pour le 1 décembre 2025

Problème Étude des torseurs
(d’après Centrale TSI 2017)

Les torseurs sont des outils mathématiques utilisés en mécanique du solide indéformable.

On considère un solide indéformable Σ. Si A est un point de ce solide et si
−→
V (A)R désigne la

vitesse du point A ∈ Σ dans le référentiel galiléen R, il est bien connu que, pour tous points A et
B de Σ, on a −→

V (B)R =
−→
V (A)R +

−−→
BA ∧

−→
ΩΣ/R

où
−→
ΩΣ/R est un vecteur appelé vecteur vitesse instantanée de rotation du solide Σ par rapport au

référentiel R.
L’application A 7→

−→
V (A)R est alors liée au torseur cinématique.

Cette partie se propose de dégager la théorie liée aux torseurs.
Notations :

— E désigne l’ensemble des points de l’espace géométrique orienté usuel de dimension 3 et on
considère O un point fixé de E .

— On note
−→
E l’ensemble des vecteurs de E et on considère B = (−→e 1,

−→e 2,
−→e 3) une base ortho-

normée directe de
−→
E .

— Le produit scalaire de deux vecteurs −→u et −→v de
−→
E est noté 〈−→u ,−→v 〉.

— Le produit vectoriel de deux vecteurs −→u et −→v de
−→
E est noté −→u ∧ −→v .

On appelle torseur toute application M : E →
−→
E pour

laquelle il existe un vecteur −→r tel que

∀(A,B) ∈ E2 M(B) = M(A) +
−−→
BA ∧ −→r

Partie I — L’espace T des torseurs

1. Soit −→r un vecteur de
−→
E . Montrer que l’application M : A 7→ −→r ∧

−→
OA est un torseur.

2. Montrer que l’ensemble T des torseurs est un sous-espace vectoriel du R-espace vectoriel
F(E ,

−→
E ) des applications de E dans

−→
E .

3. (a) Soit −→u et −→v deux vecteurs de l’espace. Rappeler, sans démonstration, une condition
géométrique nécessaire et suffisante pour que −→u ∧ −→v =

−→
0 .

(b) Soit M un torseur. Montrer que le vecteur −→r de la définition est unique.

Il s’appelle la résultante du torseur M. On admet que l’application T →
−→
E

M 7→ −→r
est

linéaire.
4. (a) Vérifier qu’une application constante de E dans

−→
E est un torseur et en donner la résul-

tante.
Un tel torseur s’appelle un couple.

(b) Montrer que l’ensemble C des couples est un sous-espace vectoriel de T et que l’appli-

cation C →
−→
E

M 7→ M(O)
est un isomorphisme.

(c) En déduire la dimension de C.
5. On appelle glisseur tout torseur qui s’annule en au moins un point de E .

(a) Soit O1 un point de E distinct de O et −→r un vecteur non nul et non colinéaire à
−−→
OO1.

On note g0 : A 7→ −→r ∧
−→
OA et g1 : A 7→ −→r ∧

−−→
O1A.

Montrer que g0 et g1 sont des glisseurs, mais que g0 − g1 n’en est pas un. Expliquer
pourquoi l’ensemble G des glisseurs n’est pas un sous-espace vectoriel de T .
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(b) Montrer que l’ensemble GO des glisseurs s’annulant en O est un sous-espace vectoriel de

T et que l’application GO →
−→
E

M 7→ −→r
, où −→r est la résultante de M, est un isomorphisme.

(c) En déduire la dimension de GO.
(d) Démontrer que T = C ⊕ GO. Quelle est la dimension de T ?

Partie II — Équiprojectivité

6. Démontrer que, si M est un torseur alors M vérifie la propriété suivante :

∀(A,B) ∈ E2, 〈M(A),
−−→
AB〉 = 〈M(B),

−−→
AB〉

Cette propriété est connue sous le nom de propriété d’équiprojectivité.
On se propose d’étudier la réciproque.

7. (a) Rappeler la définition d’une matrice antisymétrique.
(b) L’espace est muni du repère orthonormé direct (O,−→e 1,

−→e 2,
−→e 3) et on identifie tout

vecteur avec la matrice colonne 3× 1 contenant ses coordonnées dans la base B.
Montrer qu’il existe un unique vecteur −→r , dont on donnera les coordonnées dans la base
B, tel que

∀−→u =

xy
z

 ∈
−→
E ,

 0 1 2
−1 0 3
−2 −3 0

xy
z

 = −→r ∧ −→u

8. Soit f :
−→
E →

−→
E une application telle que pour tous vecteurs −→u et −→v , 〈f(−→u ),−→v 〉 =

−〈−→u , f(−→v )〉.
(a) Montrer que f est linéaire.

Pour λ et µ deux nombres réels, on pourra considérer le vecteur −→w = f(λ−→u + µ−→v ) −
λf(−→u )− µf(−→v ) et montrer qu’il est orthogonal à tout vecteur de E.

(b) Montrer que la matrice de f dans la base B est une matrice antisymétrique.
(c) Démontrer qu’il existe un unique vecteur −→r ∈

−→
E tel que pour tout −→u ∈

−→
E , f(−→u ) =

−→r ∧ −→u .
9. Soit M : E →

−→
E une application vérifiant la propriété d’équiprojectivité. Montrer alors que

M est un torseur.
On pourra considérer l’application f :

−→
E →

−→
E définie pour tout vecteur −→u ∈

−→
E par f(−→u ) =

M(O′)−M(O) où O′ désigne le translaté du point O par le vecteur −→u c’est-à-dire
−−→
OO′ = −→u .
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Corrigé

Réponse du problème
Partie I — L’espace T des torseurs

1. Soit −→r un vecteur de
−→
E et M : A 7→ −→r ∧

−→
OA.

Soit (A,B) ∈ E2

M(B) = −→r ∧
−−→
OB

= −→r ∧
(−→
OA+

−−→
AB

)
= −→r ∧

−→
OA+−→r ∧

−−→
AB

= M(A) +
−−→
BA ∧ −→r

Ainsi M : A 7→ −→r ∧
−→
OA est un torseur.

2. L’application M : A 7→ −→
0 est bien un torseur (il suffit de prendre −→r =

−→
0 ).

Soit M∞ et M∈ deux torseurs et λ ∈ R. Soit (A,B) ∈ E2

(M∞ + λM∈) (B) = M∞(B) + λM∈(B)

= M∞(A) +
−−→
BA ∧ −→r1 + λ

(
M∈(A) +

−−→
BA ∧ −→r2

)
= M∞(A) + λM∈(A) +

−−→
BA ∧ (−→r1 + λ−→r2)

= (M∞ + λM∈) (A) +
−−→
BA ∧ (−→r1 + λ−→r2)

Donc M∞ + λM∈ est un torseur.

Ainsi l’ensemble T des torseurs est un sous-espace vectoriel du R-espace vectoriel F(E ,
−→
E ) des applica-

tions de E dans
−→
E .

3. (a) Soit −→u et −→v deux vecteurs de l’espace. On sait que
−→u ∧ −→v =

−→
0 si et seulement si −→u et −→v sont colinéaires.

(b) Soit M un torseur. On suppose qu’il existe −→r1 et −→r2 deux vecteurs tels que

∀(A,B) ∈ E2 M(B) = M(A) +
−−→
BA ∧ −→r 1

∀(A,B) ∈ E2 M(B) = M(A) +
−−→
BA ∧ −→r 2

En soustrayant on en déduit que

∀(A,B) ∈ E2 −−→
BA ∧ (−→r 1 −−→r2) =

−→
0

Ainsi −→r 1 −−→r2 est colinéaire à tous les vecteurs
−−→
BA de l’espace. Ceci n’est possible que

si −→r 1 −−→r2 =
−→
0 .

On en déduit que le vecteur −→r de la définition est unique.
4. (a) Soit −→u un vecteur de l’espace et M : A 7→ −→u .

Pour (A,B) ∈ E2 on a alors

M(B) = M(A) = M(A) +
−−→
BA ∧ −→

0

Ainsi M : A 7→ −→u est un torseur, sa résultante est le vecteur nul −→0 .
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(b) Soit −→u1 et −→u2 deux vecteurs et soit M1 : A 7→ −→u1, M2 : A 7→ −→u2 les couples associés.
Alors M1+λM2 est l’application constante égale à −→u1+λ−→u2 et donc est bien un couple.

Ainsi l’ensemble C des couples est un sous-espace vectoriel de T

Notons φ l’application C →
−→
E

M 7→ M(O)

Soit −→u1 et −→u2 deux vecteurs et soit M1 : A 7→ −→u1, M2 : A 7→ −→u2. Alors

φ(M1 + λM2) = (M1 + λM2)(0) =
−→u1 + λ−→u2 = φ(M1) + λφ(M2)

φ est donc bien linéaire.

Soit −→u ∈
−→
E , l’application M : A 7→ −→u est bien un couple et φ(M) = −→u .

Ainsi φ est surjective.

Soit maintenant M un couple tel que φ(M) =
−→
0 .

Alors, comme M est une application constante (c’est un couple), on en déduit que, pour
tout A ∈ E , M(A) = M(O) =

−→
0 . M est donc l’application nulle.

Ainsi φ est injective.

φ est une application linéaire surjective et injective, c’est donc un isomorphisme.

(c)
−→
E est de dimension 3 et φ est un isomorphisme, ainsi dim(C) = 3.

5. (a) Soit O1 un point de E distinct de O et −→r un vecteur non nul et non colinéaire à
−−→
OO1.

On note g0 : A 7→ −→r ∧
−→
OA et g1 : A 7→ −→r ∧

−−→
O1A.

Soit M = O + −→r i.e. M est l’image de O par la translation de vecteur −→r ou encore−−→
OM = −→r .
On a alors g0(M) = −→r ∧

−−→
OM = −→r ∧ −→r =

−→
0 . g0 est donc un glisseur.

De même, en considérant M1 = O1 +
−→r on a g1(M1) =

−→
0 donc g1 est un glisseur.

Pour A ∈ E on a

(g0 − g1)(A) =
−→r ∧

−→
OA−−→r ∧

−−→
O1A = −→r ∧

−−→
OO1

Ainsi g0 − g1 est une application constante i.e. un couple. Comme −→r et
−−→
OO1 sont non

colinéaire, −→r ∧
−−→
OO1 6= −→

0 et donc g0 − g1 ne s’annule jamais.

Ainsi g0 − g1 n’est pas un glisseur.

L’ensemble G des glisseurs n’est pas stable par combinaison linéaire ce n’est donc pas un sous-espace vectoriel de T .
(b) Soit g1 et g2 deux glisseurs s’annulant en 0 et λ. Alors g1 + λg2 est un torseur d’après

la question 2. et (g1 + λg2)(O) = g1(O) + λg2(O) =
−→
0 .

Ainsi g1 + λg2 est un glisseur s’annulant en O.

On en déduit que GO est un sous-espace vectoriel de T .

Notons ψ l’application GO →
−→
E

M 7→ −→r
ψ est la restriction de φ au sous-espace vectoriel GO c’est donc encore une application
linéaire.
Soit g un glisseur tel que ψ(g) = −→

0 .

Soit A ∈ E , on a alors g(A) = g(O) +
−→
AO ∧ −→

0 =
−→
0 . g est donc le torseur nul.

Ainsi ψ est injective.

Soit −→u ∈
−→
E et g : A 7→ −→u ∧

−→
OA.

D’après la question 1. g est un torseur de résultante −→u . De plus g(O) =
−→
0 . g est donc

un glisseur s’annulant en 0 et ψ(g) = −→u .
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Ainsi ψ est surjective.

On en déduit que l’application GO →
−→
E

M 7→ −→r
est un isomorphisme.

(c) dim(
−→
E ) = 3 et ψ est un isomorphisme. Ainsi dim(GO) = 3.

(d) Soit M ∈ C ∩ GO

Alors M est une application constante qui en particulier s’annule en O, c’est donc
l’application nulle.
Ainsi C ∩ GO = {0T .
Soit maintenant M ∈ T , montrons que M peut s’écrire comme la somme d’un couple
et d’un glisseur s’annulant en O.
Soit A ∈ E , on a alors

M(A) = M(O) +
−→
AO ∧ −→r

Notons c : A 7→ M(O) et g : A 7→
−→
AO ∧ −→r = −→r ∧

−→
OA.

c est un couple, g est un glisseur s’annulant en O et M = c+ g.
Ainsi T = C + GO

Finalement on a bien T = C ⊕ GO.

En particulier dim(T ) = dim(C) + dim(GO) = 3 + 3 = 6.

Partie II — Équiprojectivité

6. Soit M est un torseur et (A,B) ∈ E2.

Pour (−→u ,−→v ,−→w ) ∈
E3 on définit le
produit mixte
[−→u ,−→v ,−→w ] =
⟨−→u ∧ −→v ,−→w ⟩. Il est
égal aux détermi-
nant de la matrice
des coordonnées des
vecteurs (−→u ,−→v ,−→w )
dans une base ortho-
normée directe.

Produit mixte

〈M(B),
−−→
AB〉 = 〈M(A) +

−−→
BA ∧ −→r ,

−−→
AB〉

= 〈M(A),
−−→
AB〉+ 〈

−−→
BA ∧ −→r ,

−−→
AB〉

= 〈M(A),
−−→
AB〉+

[−−→
BA,−→r ,

−−→
AB

]
= 〈M(A),

−−→
AB〉 car

−−→
BA et

−−→
AB sont colinéaires

On a donc bien
∀(A,B) ∈ E2, 〈M(A),

−−→
AB〉 = 〈M(B),

−−→
AB〉

7. (a) Une matrice M est antisymétrique si M⊤ = −M .

(b) Soit −→u =

xy
z

 ∈
−→
E

Alors  0 1 2
−1 0 3
−2 −3 0

xy
z

 =

 y + 2z
−x+ 3z
−2x− 3z


De plus, si −→r =

ab
c

 alors −→r ∧ −→u =

bz − cy
cx− az
ay − bx



Ainsi, en prenant −→r =

−3
2
−1

 on obtient

∀−→u =

xy
z

 ∈
−→
E ,

 0 1 2
−1 0 3
−2 −3 0

xy
z

 = −→r ∧ −→u

5 Bastien Marmeth



Lycée La Martinière Monplaisir PT 2025-2026

8. (a) Soit (−→u ,−→v ) ∈
−→
E 2, (λ, µ) ∈ R2 et −→x ∈

−→
E

On a alors

〈f(λ−→u + µ−→v )− λf(−→u )− µf(−→v ),−→x 〉 = 〈f(λ−→u + µ−→v ),−→x 〉 − λ〈f(−→u ),−→x 〉 − µ〈f(−→v ),−→x 〉
= −〈λ−→u + µ−→v , f(−→x )〉+ λ〈−→u , f(−→x )〉+ µ〈−→v , f(−→x )〉
= 〈−λ−→u − µ−→v + λ−→u + µ−→v , f(−→x )〉

= 〈−→0 , f(−→x )〉
= 0

Ainsi f(λ−→u + µ−→v ) − λf(−→u ) − µf(−→v ) est orthogonal à tout vecteur de E donc en
particulier à lui-même. C’est donc le vecteur nul.
En d’autres termes f(λ−→u + µ−→v ) = λf(−→u ) + µf(−→v )

f est donc linéaire.

(b) La base B est orthonormée, ainsi la matrice de f dans la base B est la matrice

〈f(−→e1),−→e1〉 〈f(−→e2),−→e1〉 〈f(−→e3),−→e1〉
〈f(−→e1),−→e2〉 〈f(−→e2),−→e2〉 〈f(−→e3),−→e2〉
〈f(−→e1),−→e3〉 〈f(−→e2),−→e3〉 〈f(−→e3),−→e3〉


Par définition de f on a, pour (i, j) ∈ J1, 3K2, 〈f(−→ei ),−→ej 〉 = −〈−→ei , f(−→ej )〉 = −〈f(−→ej ),−→ei 〉
En particulier 〈f(−→ei ),−→ei 〉 = 0.

Ainsi MatB(f) =

 0 〈f(−→e2),−→e1〉 〈f(−→e3),−→e1〉
−〈f(−→e2),−→e1〉 0 〈f(−→e3),−→e2〉
−〈f(−→e3),−→e1〉 −〈f(−→e3),−→e2〉 0

.

En particulier la matrice de f dans la base B est une matrice antisymétrique.

(c) Notons MatB(f) =

 0 a b
−a 0 c
−b −c 0


Si −→u =

xy
z

 alors

f(−→u ) =

 ay + bz
−ax+ cz
−bx− cy

 =

−c
b
−a

 ∧

xy
z



Le vecteur −→r de coordonnées

−c
b
−a

 dans B est ainsi l’unique vecteur −→r ∈
−→
E tel que pour tout

−→u ∈
−→
E , f(−→u ) = −→r ∧ −→u .

9. Soit M : E →
−→
E une application vérifiant la propriété d’équiprojectivité.

Soit f :
−→
E →

−→
E définie pour tout vecteur −→u ∈

−→
E par f(−→u ) = M(O′)−M(O) où O′ désigne

le translaté du point O par le vecteur −→u c’est-à-dire
−−→
OO′ = −→u .

Nous allons montrer que, pour (−→u ,−→v ) ∈
−→
E 2, 〈f(−→u ),−→v 〉 = 〈u, f(−→v )〉.

Soit (−→u ,−→v ) ∈
−→
E 2. Notons O′ désigne le translaté du point O par le vecteur −→u et O′′ le

translaté du point O par le vecteur −→u . C’est-à-dire
−−→
OO′ = −→u et

−−→
OO′′ = −→v
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〈f(−→u ),−→v 〉 = 〈M(O′)−M(O),−→v

= 〈M(O′),
−−→
OO′′〉 − 〈M(O),

−−→
OO′′〉

= 〈M(O′),
−−→
OO′ +

−−−→
O′O′′〉 − 〈M(O),

−−→
OO′′〉

= 〈M(O′),
−−→
OO′〉+ 〈M(O′),

−−−→
O′O′′〉 − 〈M(O),

−−→
OO′′〉

= 〈M(O),
−−→
OO′〉+ 〈M(O′′),

−−−→
O′O′′〉 − 〈M(O′′),

−−→
OO′′〉

= 〈M(O),
−−→
OO′〉+ 〈M(O′′),

−−−→
O′O′′ −

−−→
OO′′〉

= 〈M(O),
−−→
OO′〉+ 〈M(O′′),

−−→
O′O〉

= 〈M(O),
−−→
OO′〉 − 〈M(O′′),

−−→
OO′〉

= 〈M(O)−M(O′′),
−−→
OO′〉

= −〈f(−→v ),−→u 〉

Ainsi
∀(−→u ,−→v ) ∈

−→
E 2, 〈f(−→u ),−→v 〉 = 〈u, f(−→v )〉

D’après la question 8. il existe alors un vecteur −→r tel que, pour tout −→u ∈
−→
E , f(−→u ) = −→r ∧−→u .

Soit (A,B) ∈ E2. Alors M(A)−M(O) = f(
−→
OA) = −→r ∧

−→
OA et M(B)−M(O) = f(

−−→
OB) =

−→r ∧
−−→
OB.

Ainsi,

M(B) = M(O) +−→r ∧
−−→
OB

= M(A)−−→r ∧
−→
OA+−→r ∧

−−→
OB

= M(A) +−→r ∧
−→
AO +−→r ∧

−−→
OB

= M(A) +−→r ∧
−−→
AB

= M(A) +
−−→
BA ∧ −→r

Ainsi M est un torseur.

On a montré dans ce problème l’équivalence pour une application M : E →
−→
E entre la propriété

d’équiprojectivité et la relation de Varignon.
D’un point de vue mathématiques il est plus usuel d’appeler torseur un champ de vecteurs

équiprojectif mais on vient de montrer que cette définition est équivalente à la définition par la
résultante.
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